(a)	Third Law	1
(b)	elastic potential	1
(c)	weight = mass × gravitational field strength accept gravity for gravitational field strength	1
	accept W = mg accept correct rearrangement ie mass = weight / gravitational field strength or m = W / g	
(d)	$343 = m \times 9.8$	1
	m = 343	
	9.8	1
	m = 35	1
	allow 35 with no working shown for 3 marks	
(e)	force = spring constant × compression accept force = spring constant × extension accept $F = k e$ accept correct rearrangement ie constant = force / extension or $k = F/e$	1
(f)	compression = 0.07m	

1

M1.

	allow 4900 with no working shown for 4 marks allow 49 with no working shown for 3 marks	[11]
k = 4900		1
k = 343 ÷	0.07	1
343 = k ×	0.07	1

M2 . (a)	A constant speed / velocity
-----------------	------------------------------------

accept steady pace
do not accept terminal velocity
do not accept stationary

B acceleration accept speeding up

C deceleration

accept slowing down
accept accelerating backwards
accept accelerating in reverse
do not accept decelerating backwards

(b) (i) the distance the car travels under the braking force accept braking <u>distance</u>

(ii) speed/velocity/momentum

1

1

1

1

1

(c) (i) 5000 (N) to the left
both required
accept 5000(N) with the direction indicated by an arrow
drawn pointing to the left
accept 5000(N) in the opposite direction to the force of the
car (on the barrier)
accept 5000(N) towards the car

1

(ii) to measure/detect forces exerted (on dummy / driver during the collision)

1

(iii) 4

allow **1** mark for showing a triangle drawn on the straight part of the graph **or** correct use of two pairs of coordinates

2

1

m/s²

do not accept mps²

[10]